Publications

What is a Publication?
625 Publications visible to you, out of a total of 625

Abstract (Expand)

Kinetic data of biochemical reactions are essential for the creation of kinetic models of biochemical networks. One of the main resources of such information is SABIO-RK, a curated database for kinetic data of biochemical reactions and their related information. Despite the importance for computational modelling there has been no simple solution to visualize the kinetic data from SABIO-RK. In this work, I present cy3sabiork, an app for querying and visualization of kinetic data from SABIO-RK in Cytoscape. The kinetic information is accessible via a combination of graph structure and annotations of nodes, with provided information consisting of: (I) reaction details, enzyme and organism; (II) kinetic law, formula, parameters; (III) experimental conditions; (IV) publication; (V) additional annotations. cy3sabiork creates an intuitive visualization of kinetic entries in form of a species-reaction-kinetics graph, which reflects the reaction-centered approach of SABIO-RK. Kinetic entries can be imported in SBML format from either the SABIO-RK web interface or via web service queries. The app allows for easy comparison of kinetic data, visual inspection of the elements involved in the kinetic record and simple access to the annotation information of the kinetic record. I applied cy3sabiork in the computational modelling of galactose metabolism in the human liver.

Author: Matthias König

Date Published: 2016

Publication Type: Not specified

Abstract (Expand)

Selecting an efficient small set of adjustable parameters to improve metabolic features of an organism is important for a reduction of implementation costs and risks of unpredicted side effects. In practice, to avoid the analysis of a huge combinatorial space for the possible sets of adjustable parameters, experience-, and intuition-based subsets of parameters are often chosen, possibly leaving some interesting counter-intuitive combinations of parameters unrevealed. The combinatorial scan of possible adjustable parameter combinations at the model optimization level is possible; however, the number of analyzed combinations is still limited. The total optimization potential (TOP) approach is proposed to assess the full potential for increasing the value of the objective function by optimizing all possible adjustable parameters. This seemingly unpractical combination of adjustable parameters allows assessing the maximum attainable value of the objective function and stopping the combinatorial space scanning when the desired fraction of TOP is reached and any further increase in the number of adjustable parameters cannot bring any reasonable improvement. The relation between the number of adjustable parameters and the reachable fraction of TOP is a valuable guideline in choosing a rational solution for industrial implementation. The TOP approach is demonstrated on the basis of two case studies.

Authors: Egils Stalidzans, Ivars Mozga, Jurijs Sulins, Peteris Zikmanis

Date Published: 2016

Publication Type: Not specified

Abstract (Expand)

Stratification of head and neck squamous cell carcinomas (HNSCC) based on HPV16 DNA and RNA status, gene expression patterns, and mutated candidate genes may facilitate patient treatment decision. We characterize head and neck squamous cell carcinomas (HNSCC) with different HPV16 DNA and RNA (E6*I) status from 290 consecutively recruited patients by gene expression profiling and targeted sequencing of 50 genes. We show that tumors with transcriptionally inactive HPV16 (DNA+ RNA-) are similar to HPV-negative (DNA-) tumors regarding gene expression and frequency of TP53 mutations (47%, 8/17 and 43%, 72/167, respectively). We also find that an immune response-related gene expression cluster is associated with lymph node metastasis, independent of HPV16 status and that disruptive TP53 mutations are associated with lymph node metastasis in HPV16 DNA- tumors. We validate each of these associations in another large data set. Four gene expression clusters which we identify differ moderately but significantly in overall survival. Our findings underscore the importance of measuring the HPV16 RNA (E6*I) and TP53-mutation status for patient stratification and identify associations of an immune response-related gene expression cluster and TP53 mutations with lymph node metastasis in HNSCC.

Authors: G. Wichmann, M. Rosolowski, K. Krohn, M. Kreuz, A. Boehm, A. Reiche, U. Scharrer, D. Halama, J. Bertolini, U. Bauer, D. Holzinger, M. Pawlita, J. Hess, C. Engel, D. Hasenclever, M. Scholz, P. Ahnert, H. Kirsten, A. Hemprich, C. Wittekind, O. Herbarth, F. Horn, A. Dietz, M. Loeffler

Date Published: 15th Dec 2015

Publication Type: Journal

Abstract (Expand)

We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker.

Authors: J. L. Snoep, K. Green, J. Eicher, D. C. Palm, G. Penkler, F. du Toit, N. Walters, R. Burger, H. V. Westerhoff, D. D. van Niekerk

Date Published: 27th Nov 2015

Publication Type: Not specified

Abstract (Expand)

The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells.

Authors: M. R. VanLinden, C. Dolle, I. K. Pettersen, V. A. Kulikova, M. Niere, G. Agrimi, S. E. Dyrstad, F. Palmieri, A. A. Nikiforov, K. J. Tronstad, M. Ziegler

Date Published: 13th Nov 2015

Publication Type: Not specified

Abstract (Expand)

UNLABELLED: Modeling of dynamical systems using ordinary differential equations is a popular approach in the field of systems biology. Two of the most critical steps in this approach are to construct dynamical models of biochemical reaction networks for large datasets and complex experimental conditions and to perform efficient and reliable parameter estimation for model fitting. We present a modeling environment for MATLAB that pioneers these challenges. The numerically expensive parts of the calculations such as the solving of the differential equations and of the associated sensitivity system are parallelized and automatically compiled into efficient C code. A variety of parameter estimation algorithms as well as frequentist and Bayesian methods for uncertainty analysis have been implemented and used on a range of applications that lead to publications. AVAILABILITY AND IMPLEMENTATION: The Data2Dynamics modeling environment is MATLAB based, open source and freely available at http://www.data2dynamics.org. CONTACT: andreas.raue@fdm.uni-freiburg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: A. Raue, B. Steiert, M. Schelker, C. Kreutz, T. Maiwald, H. Hass, J. Vanlier, C. Tonsing, L. Adlung, R. Engesser, W. Mader, T. Heinemann, J. Hasenauer, M. Schilling, T. Hofer, E. Klipp, F. Theis, U. Klingmuller, B. Schoberl, J. Timmer

Date Published: 1st Nov 2015

Publication Type: Journal

Abstract (Expand)

Human American trypanosomiasis, commonly called Chagas disease, is one of the most neglected illnesses in the world and remains one of the most prevalent chronic infectious diseases of Latin America with thousands of new cases every year. The only treatments available have been introduced five decades ago. They have serious, undesirable side effects and disputed benefits in the chronic stage of the disease - a characteristic and debilitating cardiomyopathy and/or megavisceras. Several laboratories have therefore focused their efforts in finding better drugs. Although recent years have brought new clinical trials, these are few and lack diversity in terms of drug mechanism of action, thus resulting in a weak drug discovery pipeline. This fragility has been recently exposed by the failure of two candidates; posaconazole and E1224, to sterilely cure patients in phase 2 clinical trials. Such setbacks highlight the need for continuous, novel and high quality drug discovery and development efforts to discover better and safer treatments. In this article we will review past and current findings on drug discovery for Trypanosoma cruzi made by academic research groups, industry and other research organizations over the last half century. We also analyze the current research landscape that is now better placed than ever to deliver alternative treatments for Chagas disease in the near future.

Authors: L. Gaspar, C. B. Moraes, L. H. Freitas-Junior, S. Ferrari, L. Costantino, M. P. Costi, R. P. Coron, T. K. Smith, J. L. Siqueira-Neto, J. H. McKerrow, A. Cordeiro-da-Silva

Date Published: 20th Oct 2015

Publication Type: Journal

Abstract (Expand)

Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell(-1)) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell(-1)) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.

Authors: A. Flis, A. P. Fernandez, T. Zielinski, V. Mengin, R. Sulpice, K. Stratford, A. Hume, A. Pokhilko, M. M. Southern, D. D. Seaton, H. G. McWatters, M. Stitt, K. J. Halliday, A. J. Millar

Date Published: 16th Oct 2015

Publication Type: Not specified

Abstract (Expand)

Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission., IMPORTANCE Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited \textless40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination.

Authors: Susanna K. P. Lau, Yun Feng, Honglin Chen, Hayes K. H. Luk, Wei-Hong Yang, Kenneth S. M. Li, Yu-Zhen Zhang, Yi Huang, Zhi-Zhong Song, Wang-Ngai Chow, Rachel Y. Y. Fan, Syed Shakeel Ahmed, Hazel C. Yeung, Carol S. F. Lam, Jian-Piao Cai, Samson S. Y. Wong, Jasper F. W. Chan, Kwok-Yung Yuen, Hai-Lin Zhang, Patrick C. Y. Woo

Date Published: 22nd Sep 2015

Publication Type: Journal

Abstract (Expand)

Genomic aberrations can be used to subtype breast cancer. In this study, we investigated DNA copy number (CN) profiles of 69 cases of male breast cancer (MBC) by array comparative genomic hybridization (aCGH) to detect recurrent gains and losses in comparison with female breast cancers (FBC). Further, we classified these profiles as BRCA1-like, BRCA2-like or non-BRCA-like profiles using previous classifiers derived from FBC, and correlated these profiles with pathological characteristics. We observed large CN gains on chromosome arms 1q, 5p, 8q, 10p, 16p, 17q, and chromosomes 20 and X. Large losses were seen on chromosomes/chromosome arms 1p, 6p, 8p, 9, 11q, 13, 14q, 16q, 17p, and 22. The pattern of gains and losses in estrogen receptor positive (ER+) MBC was largely similar to ER+ FBC, except for gains on chromosome X in MBC, which were uncommon in FBC. Out of 69 MBC patients, 15 patients (22%) had a BRCA2-like profile, of which 2 (3%) were also BRCA1-like. One patient (1%) was only BRCA1-like; the remaining 53 (77%) patients were classified as non-BRCA-like. BRCA2-like cases were more often p53 accumulated than non-BRCA-like cases (P = 0.014). In conclusion, the pattern of gains and losses in ER+ MBC was largely similar to that of its ER+ FBC counterpart, except for gains on chromosome X in MBC, which are uncommon in FBC. A significant proportion of MBC has a BRCA2-like aCGH profile, pointing to a potentially hereditary nature, and indicating that they could benefit from a drug regimen targeting BRCA defects as in FBC.

Authors: H. D. Biesma, P. C. Schouten, M. M. Lacle, J. Sanders, W. Brugman, R. Kerkhoven, I. Mandjes, P. van der Groep, P. J. van Diest, S. C. Linn

Date Published: 11th Sep 2015

Publication Type: Journal

Abstract (Expand)

Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30–40 °C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5–40 °C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (View the MathML source), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a ‘low’ (within 5–31 °C) and a ‘high’ (within 33–40 °C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31–32 °C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26–31 °C. This limit is reflected in the predetermined combination of View the MathML source, elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin of metabolic efficiency. We hypothesize that a temperature increase above Topt (e.g. >31 °C) triggers both an increment in mglc and suppression of μmax, which together contribute to an upshift of Yatp/glc from the lower limit and thus compensate for the loss of the safety margin. This trade-off allows adding 10 more degrees to Topt and extends the thermal window up to 40 °C, sustaining survival and reproduction in supraoptimal temperatures. Deeper understanding of the limits of thermal tolerance can be practically exploited in biotechnological applications.

Authors: Maksim Zakhartsev, Xuelian Yang, Matthias Reuss, Hans Otto Pörtner

Date Published: 1st Aug 2015

Publication Type: Not specified

Abstract (Expand)

Cell signaling, gene expression, and metabolism are affected by cell-cell heterogeneity and random changes in the environment. The effects of such fluctuations on cell signaling and gene expression have recently been studied intensively using single-cell experiments. In metabolism heterogeneity may be particularly important because it may affect synchronisation of metabolic oscillations, an important example of cell-cell communication. This synchronisation is notoriously difficult to describe theoretically as the example of glycolytic oscillations shows: neither is the mechanism of glycolytic synchronisation understood nor the role of cell-cell heterogeneity. To pin down the mechanism and to assess its robustness and universality we have experimentally investigated the entrainment of glycolytic oscillations in individual yeast cells by periodic external perturbations. We find that oscillatory cells synchronise through phase shifts and that the mechanism is insensitive to cell heterogeneity (robustness) and similar for different types of external perturbations (universality).

Authors: Anna-Karin Gustavsson, Caroline B. Adiels, Bernhard Mehlig, Mattias Goksör

Date Published: 1st Aug 2015

Publication Type: Not specified

Abstract (Expand)

UNLABELLED: Most acetogens can reduce CO2 with H2 to acetic acid via the Wood-Ljungdahl pathway, in which the ATP required for formate activation is regenerated in the acetate kinase reaction. However, a few acetogens, such as Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei, also form large amounts of ethanol from CO2 and H2. How these anaerobes with a growth pH optimum near 5 conserve energy has remained elusive. We investigated this question by determining the specific activities and cofactor specificities of all relevant oxidoreductases in cell extracts of H2/CO2-grown C. autoethanogenum. The activity studies were backed up by transcriptional and mutational analyses. Most notably, despite the presence of six hydrogenase systems of various types encoded in the genome, the cells appear to contain only one active hydrogenase. The active [FeFe]-hydrogenase is electron bifurcating, with ferredoxin and NADP as the two electron acceptors. Consistently, most of the other active oxidoreductases rely on either reduced ferredoxin and/or NADPH as the electron donor. An exception is ethanol dehydrogenase, which was found to be NAD specific. Methylenetetrahydrofolate reductase activity could only be demonstrated with artificial electron donors. Key to the understanding of this energy metabolism is the presence of membrane-associated reduced ferredoxin:NAD(+) oxidoreductase (Rnf), of electron-bifurcating and ferredoxin-dependent transhydrogenase (Nfn), and of acetaldehyde:ferredoxin oxidoreductase, which is present with very high specific activities in H2/CO2-grown cells. Based on these findings and on thermodynamic considerations, we propose metabolic schemes that allow, depending on the H2 partial pressure, the chemiosmotic synthesis of 0.14 to 1.5 mol ATP per mol ethanol synthesized from CO2 and H2. IMPORTANCE: Ethanol formation from syngas (H2, CO, and CO2) and from H2 and CO2 that is catalyzed by bacteria is presently a much-discussed process for sustainable production of biofuels. Although the process is already in use, its biochemistry is only incompletely understood. The most pertinent question is how the bacteria conserve energy for growth during ethanol formation from H2 and CO2, considering that acetyl coenzyme A (acetyl-CoA), is an intermediate. Can reduction of the activated acetic acid to ethanol with H2 be coupled with the phosphorylation of ADP? Evidence is presented that this is indeed possible, via both substrate-level phosphorylation and electron transport phosphorylation. In the case of substrate-level phosphorylation, acetyl-CoA reduction to ethanol proceeds via free acetic acid involving acetaldehyde:ferredoxin oxidoreductase (carboxylate reductase).

Authors: J. Mock, Y. Zheng, A. P. Mueller, S. Ly, L. Tran, S. Segovia, S. Nagaraju, M. Kopke, P. Durre, R. K. Thauer

Date Published: 8th Jul 2015

Publication Type: Journal

Abstract (Expand)

Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatoryassociated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

Authors: Jason E. Shoemaker, Satoshi Fukuyama, Amie J. Eisfeld, Dongming Zhao, Eiryo Kawakami, Saori Sakabe, Tadashi Maemura, Takeo Gorai, Hiroaki Katsura, Yukiko Muramoto, Shinji Watanabe, Tokiko Watanabe, Ken Fuji, Yukiko Matsuoka, Hiroaki Kitano, Yoshihiro Kawaoka

Date Published: 5th Jun 2015

Publication Type: Journal

Abstract (Expand)

Signaling pathways are characterized by crosstalk, feedback and feedforward mechanisms giving rise to highly complex and cell-context specific signaling networks. Dissecting the underlying relations is crucial to predict the impact of targeted perturbations. However, a major challenge in identifying cell-context specific signaling networks is the enormous number of potentially possible interactions. Here, we report a novel hybrid mathematical modeling strategy to systematically unravel hepatocyte growth factor (HGF) stimulated phosphoinositide-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signaling, which critically contribute to liver regeneration. By combining time-resolved quantitative experimental data generated in primary mouse hepatocytes with interaction graph and ordinary differential equation modeling, we identify and experimentally validate a network structure that represents the experimental data best and indicates specific crosstalk mechanisms. Whereas the identified network is robust against single perturbations, combinatorial inhibition strategies are predicted that result in strong reduction of Akt and ERK activation. Thus, by capitalizing on the advantages of the two modeling approaches, we reduce the high combinatorial complexity and identify cell-context specific signaling networks.

Authors: L. A. D'Alessandro, R. Samaga, T. Maiwald, S. H. Rho, S. Bonefas, A. Raue, N. Iwamoto, A. Kienast, K. Waldow, R. Meyer, M. Schilling, J. Timmer, S. Klamt, U. Klingmuller

Date Published: 24th Apr 2015

Publication Type: Journal

Abstract (Expand)

The enzymes in the Embden–Meyerhof–Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download.

Authors: Gerald Penkler, Francois du Toit, Waldo Adams, Marina Rautenbach, Daniel C. Palm, David D. van Niekerk, Jacky L. Snoep

Date Published: 1st Apr 2015

Publication Type: Not specified

Abstract (Expand)

The intra- and extracellular concentrations of 16 metabolites were measured in chemostat (D = 0.1 h−1) anaerobic cultures of the yeast Saccharomyces cerevisiae CEN.PK-113-7D growing on minimal medium. Two independent sampling workflows were employed: (i) conventional cold methanol quenching and (ii) a differential approach. Metabolites were quantified in different sample fractions (total, extracellular, quenching supernatant, methanol/water extract and pellet) in order to derive their mass balance. The differential method in combination with absolute metabolite quantification by gas-chromatography with isotope dilution mass spectrometry (GC–IDMS) was used as a benchmark to assess quality of the cold methanol quenching procedure. Quantitative comparison of metabolite concentrations in all fractions collected by different quenching techniques indicates asystematic loss of the total mass of various metabolites in course of the cold methanol quenching. Pellet resulting from the cold methanol quenching besides biomass contains considerable amounts of precipitated inorganic salts from the fermentation media. Quantitative analysis has revealed significant co-precipitation of polar extracellular metabolites together with these salts. This phenomenon is especially significant for metabolites with large extracellular mass-fraction. We report that the co-precipitation is a hitherto neglected phenomenon and concluded that its degree strongly linked to culturing conditions (i.e. media composition) and chemical properties of the particular metabolite. Thus, intracellular metabolite levels measured from samples collected by cold methanol quenching might be uncertain and variably biased due to corruption by described phenomena.

Authors: Maksim Zakhartsev, Oliver Vielhauer, Thomas Horn, Xuelian Yang, Matthias Reuss

Date Published: 1st Apr 2015

Publication Type: Not specified

Abstract (Expand)

The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions.

Authors: Makoto Ujike, Fumihiro Taguchi

Date Published: 1st Apr 2015

Publication Type: Journal

Abstract (Expand)

Sustainable production of target compounds such as biofuels and high-value chemicals for pharmaceutical, agrochemical, and chemical industries is becoming an increasing priority given their current dependency upon diminishing petrochemical resources. Designing these strains is difficult, with current methods focusing primarily on knocking-out genes, dismissing other vital steps of strain design including the overexpression and dampening of genes. The design predictions from current methods also do not translate well-into successful strains in the laboratory. Here, we introduce RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting strain designs for overproduction of targets. The method uses flux variability analysis to profile each reaction within the system under differing production percentages of target-compound and biomass. Using these profiles, reactions are identified as potential knockout, overexpression, or dampening targets. The identified reactions are ranked according to their suitability, providing flexibility in strain design for users. The software was tested by designing a butanol-producing Escherichia coli strain, and was compared against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable design predictions, when predictions from these methods are compared to a successful butanol-producing experimentally-validated strain. Overall RobOKoD provides users with rankings of predicted beneficial genetic interventions with which to support optimized strain design.

Authors: N. J. Stanford, P. Millard, N. Swainston

Date Published: 24th Mar 2015

Publication Type: Not specified

Abstract (Expand)

Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to cycling DOF factor 1 (CDF1) and flavin-binding, KELCH repeat, F-box 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock-regulated transcription of phytochrome-interacting factor 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions.

Authors: D. D. Seaton, R. W. Smith, Y. H. Song, D. R. MacGregor, K. Stewart, G. Steel, J. Foreman, S. Penfield, T. Imaizumi, A. J. Millar, K. J. Halliday

Date Published: 21st Jan 2015

Publication Type: Not specified

Abstract (Expand)

Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses.

Authors: M. Poenisch, P. Metz, H. Blankenburg, A. Ruggieri, J. Y. Lee, D. Rupp, I. Rebhan, K. Diederich, L. Kaderali, F. S. Domingues, M. Albrecht, V. Lohmann, H. Erfle, R. Bartenschlager

Date Published: 8th Jan 2015

Publication Type: Not specified

Abstract (Expand)

Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets.

Authors: N. Veith, M. Solheim, K. W. van Grinsven, B. G. Olivier, J. Levering, R. Grosseholz, J. Hugenholtz, H. Holo, I. Nes, B. Teusink, U. Kummer

Date Published: 19th Dec 2014

Publication Type: Not specified

Abstract (Expand)

STAT5A and STAT5B are important transcription factors that dimerize and transduce activation signals of cytokine receptors directly to the nucleus. A typical cytokine that mediates STAT5 activation is erythropoietin (Epo). Differential functions of STAT5A and STAT5B have been reported. However, the extent to which phosphorylated STAT5A and STAT5B (pSTAT5A, pSTAT5B) form homo- or heterodimers is not understood, nor is how this might influence the signal transmission to the nucleus. To study this, we designed a concept to investigate the isoform-specific dimerization behavior of pSTAT5A and pSTAT5B that comprises isoform-specific immunoprecipitation (IP), measurement of the degree of phosphorylation, and isoform ratio determination between STAT5A and STAT5B. For the main analytical method, we employed quantitative label-free and -based mass spectrometry. For the cellular model system, we used Epo receptor (EpoR)-expressing BaF3 cells (BaF3-EpoR) stimulated with Epo. Three hypotheses of dimer formation between pSTAT5A and pSTAT5B were used to explain the analytical results by a static mathematical model: formation of (i) homodimers only, (ii) heterodimers only, and (iii) random formation of homo- and heterodimers. The best agreement between experimental data and model simulations was found for the last case. Dynamics of cytoplasmic STAT5 dimerization could be explained by distinct nuclear import rates and individual nuclear retention for homo- and heterodimers of phosphorylated STAT5.

Authors: M. E. Boehm, L. Adlung, M. Schilling, S. Roth, U. Klingmuller, W. D. Lehmann

Date Published: 5th Dec 2014

Publication Type: Journal

Abstract (Expand)

Kinetoplastea such as trypanosomatid parasites contain specialized peroxisomes that uniquely contain enzymes of the glycolytic pathway and other parts of intermediary metabolism and hence are called glycosomes. Their specific enzyme content can vary strongly, quantitatively and qualitatively, between different species and during the parasites’ life cycle. The correct sequestering of enzymes has great importance for the regulation of the trypanosomatids’ metabolism and can, dependent on environmental conditions, even be essential. Glycosomes also play a pivotal role in life-cycle regulation of Trypanosoma brucei, as the translocation of a protein phosphatase from the cytosol forms part of a crucial developmental control switch. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative for unique forms of activity regulation, whereas many kinetic activity regulation mechanisms common for glycolytic enzymes are absent in these organisms. Glycosome turnover occurs by autophagic degradation of redundant organelles and assembly of new ones. This may provide the trypanosomatids with a manner to rapidly and efficiently adapt their metabolism to the sudden, major nutritional changes often encountered during the life cycle. This could also have helped facilitating successful adaptation of kinetoplastids, at multiple occasions during evolution, to their parasitic life style.

Authors: Balázs Szöör, , Melisa Gualdrón-López, Paul AM Michels

Date Published: 1st Dec 2014

Publication Type: Not specified

Abstract (Expand)

Biomass-derived d-xylose represents an economically interesting substrate for the sustainable microbial production of value-added compounds. The industrially important platform organism Corynebacterium glutamicum has already been engineered to grow on this pentose as sole carbon and energy source. However, all currently described C. glutamicum strains utilize d-xylose via the commonly known isomerase pathway that leads to a significant carbon loss in the form of CO2, in particular, when aiming for the synthesis of alpha-ketoglutarate and its derivatives (e.g. l-glutamate). Driven by the motivation to engineer a more carbon-efficient C. glutamicum strain, we functionally integrated the Weimberg pathway from Caulobacter crescentus in C. glutamicum. This five-step pathway, encoded by the xylXABCD-operon, enabled a recombinant C. glutamicum strain to utilize d-xylose in d-xylose/d-glucose mixtures. Interestingly, this strain exhibited a tri-phasic growth behavior and transiently accumulated d-xylonate during d-xylose utilization in the second growth phase. However, this intermediate of the implemented oxidative pathway was re-consumed in the third growth phase leading to more biomass formation. Furthermore, C. glutamicum pEKEx3-xylXABCDCc was also able to grow on d-xylose as sole carbon and energy source with a maximum growth rate of mumax=0.07+/-0.01h(-1). These results render C. glutamicum pEKEx3-xylXABCDCc a promising starting point for the engineering of efficient production strains, exhibiting only minimal carbon loss on d-xylose containing substrates.

Authors: A. Radek, K. Krumbach, J. Gatgens, V. F. Wendisch, W. Wiechert, M. Bott, S. Noack, J. Marienhagen

Date Published: 12th Oct 2014

Publication Type: Not specified

Abstract (Expand)

For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

Editor:

Date Published: 30th Sep 2014

Publication Type: Not specified

Abstract (Expand)

Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell-cycle control and development. Stochastic switching between different phenotypes can occur as the result of random fluctuations in molecular copy numbers of mRNA and proteins arising in transcription, translation, transport and binding. However, which component of a pathway triggers such a transition is generally not known. By linking single-cell experiments on the lactose-uptake pathway in E. coli to molecular simulations, we devise a general method to pinpoint the particular fluctuation driving phenotype switching and apply this method to the transition between the uninduced and induced states of the lac-genes. We find that the transition to the induced state is not caused only by the single event of lac-repressor unbinding, but depends crucially on the time period over which the repressor remains unbound from the lac-operon. We confirm this notion in strains with a high expression level of the lac-repressor (leading to shorter periods over which the lac-operon remains unbound), which show a reduced switching rate. Our techniques apply to multistable gene regulatory systems in general and allow to identify the molecular mechanisms behind stochastic transitions in gene regulatory circuits.

Editor:

Date Published: 24th Sep 2014

Publication Type: Not specified

Abstract (Expand)

Mesenchymal stromal cells (MSCs) possess broad immunomodulatory capacities that are currently investigated for potential clinical application in treating autoimmune disorders. Third-party MSCs suppress alloantigen-induced proliferation of peripheral blood mononuclear cells providing the rationale for clinical use in graft-versus-host disease (GvHD). We confirmed that MSCs strongly inhibited proliferation of CD8(+) T cells in a mixed lymphocyte reaction. However, MSCs also suppressed proliferation of T cells specifically recognizing cytomegalovirus (CMV) and influenza virus. Inhibition was dose dependent, but independent of the culture medium. MSCs inhibited proliferation of specific CD8(+) T cells and the release of IFN-gamma by specific CD8(+) T cells for immunodominant HLA-A2- and HLA-B7- restricted antigen epitopes derived from CMV phosphoprotein 65 and influenza matrix protein. This is in contrast to a recently reported scenario where MSCs exert differential effects on alloantigen and virus-specific T cells potentially having an impact on surveillance and prophylaxis of patients treated by MSCs.

Authors: G. Malcherek, N. Jin, A. G. Huckelhoven, J. Mani, L. Wang, U. Gern, A. Diehlmann, P. Wuchter, A. Schmitt, B. Chen, A. D. Ho, M. Schmitt

Date Published: 18th Sep 2014

Publication Type: Journal

Abstract (Expand)

Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.

Authors: Y. H. Chew, B. Wenden, A. Flis, V. Mengin, J. Taylor, C. L. Davey, C. Tindal, H. Thomas, H. J. Ougham, P. de Reffye, M. Stitt, M. Williams, R. Muetzelfeldt, K. J. Halliday, A. J. Millar

Date Published: 10th Sep 2014

Publication Type: Not specified

Abstract (Expand)

Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes.

Authors: , , M. Herber, L. Attaiech, , , S. Klumpp, ,

Date Published: 6th Sep 2014

Publication Type: Not specified

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH