Publications

What is a Publication?
619 Publications visible to you, out of a total of 619

Abstract (Expand)

Data standards support the reliable exchange of information, the interoperability of tools, and the reproducibility of scientific results. In systems biology standards are agreed ways of structuring, describing, and associating models and data, as well as their respective parts, graphical visualization, and information about applied experimental or computational methods. Such standards also assist with describing how constituent parts interact together, or are linked, and how they are embedded in their environmental and experimental context. Here the focus will be on standards for formatting models and their content, and on metadata checklists and ontologies that support modeling.

Author: Martin Golebiewski

Date Published: 2019

Publication Type: InBook

Abstract (Expand)

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR-findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.

Authors: N. J. Stanford, M. Scharm, P. D. Dobson, M. Golebiewski, M. Hucka, V. B. Kothamachu, D. Nickerson, S. Owen, J. Pahle, U. Wittig, D. Waltemath, C. Goble, P. Mendes, J. Snoep

Date Published: 12th Oct 2019

Publication Type: Journal

Abstract (Expand)

UNLABELLED: Modeling of dynamical systems using ordinary differential equations is a popular approach in the field of systems biology. Two of the most critical steps in this approach are to construct dynamical models of biochemical reaction networks for large datasets and complex experimental conditions and to perform efficient and reliable parameter estimation for model fitting. We present a modeling environment for MATLAB that pioneers these challenges. The numerically expensive parts of the calculations such as the solving of the differential equations and of the associated sensitivity system are parallelized and automatically compiled into efficient C code. A variety of parameter estimation algorithms as well as frequentist and Bayesian methods for uncertainty analysis have been implemented and used on a range of applications that lead to publications. AVAILABILITY AND IMPLEMENTATION: The Data2Dynamics modeling environment is MATLAB based, open source and freely available at http://www.data2dynamics.org. CONTACT: andreas.raue@fdm.uni-freiburg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: A. Raue, B. Steiert, M. Schelker, C. Kreutz, T. Maiwald, H. Hass, J. Vanlier, C. Tonsing, L. Adlung, R. Engesser, W. Mader, T. Heinemann, J. Hasenauer, M. Schilling, T. Hofer, E. Klipp, F. Theis, U. Klingmuller, B. Schoberl, J. Timmer

Date Published: 1st Nov 2015

Publication Type: Journal

Abstract (Expand)

Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell(-1)) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell(-1)) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.

Authors: A. Flis, A. P. Fernandez, T. Zielinski, V. Mengin, R. Sulpice, K. Stratford, A. Hume, A. Pokhilko, M. M. Southern, D. D. Seaton, H. G. McWatters, M. Stitt, K. J. Halliday, A. J. Millar

Date Published: 16th Oct 2015

Publication Type: Not specified

Abstract

Not specified

Author: Timon Oefelein

Date Published: 20th Nov 2018

Publication Type: InProceedings

Abstract (Expand)

SUMMARY: Quinones are highly toxic naturally occurring thiol-reactive compounds. We have previously described novel pathways for quinone detoxification in the Gram-positive bacterium Bacillus subtilis. In this study, we have investigated the extent of irreversible and reversible thiol modifications caused in vivo by electrophilic quinones. Exposure to toxic benzoquinone (BQ) concentrations leads to depletion of numerous Cys-rich cytoplasmic proteins in the proteome of B. subtilis. Mass spectrometry and immunoblot analyses demonstrated that these BQ-depleted proteins represent irreversibly damaged BQ aggregates that escape the two-dimensional gel separation. This enabled us to quantify the depletion of thiol-containing proteins which are the in vivo targets for thiol-(S)-alkylation by toxic quinone compounds. Metabolomic approaches confirmed that protein depletion is accompanied by depletion of the low-molecular-weight (LMW) thiol cysteine. Finally, no increased formation of disulphide bonds was detected in the thiol-redox proteome in response to sublethal quinone concentrations. The glyceraldehyde-3-phosphate dehydrogenase (GapA) was identified as the only new target for reversible thiol modifications after exposure to toxic quinones. Together our data show that the thiol-(S)-alkylation reaction with protein and non-protein thiols is the in vivo mechanism for thiol depletion and quinone toxicity in B. subtilis and most likely also in other bacteria.

Authors: Manuel Liebeke, Dierk-Christoph Pöther, Nguyen van Duy, Dirk Albrecht, Dörte Becher, Falko Hochgräfe, , , Haike Antelmann

Date Published: 30th Jul 2008

Publication Type: Not specified

Abstract (Expand)

The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design’ aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear’ receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands.

Authors: Alexey N Kolodkin, Frank J Bruggeman, Nick Plant, Martijn J Moné, Barbara M Bakker, Moray J Campbell, Johannes P T M van Leeuwen, Carsten Carlberg, Jacky L Snoep, Hans V Westerhoff

Date Published: 21st Dec 2010

Publication Type: Not specified

Abstract (Expand)

The eminently complex regulatory network protecting the cell against oxidative stress, surfaces in several disease maps, including that of Parkinson’s disease (PD). How this molecular networking achieves its various functionalities and how processes operating at the seconds-minutes time scale cause a disease at a time scale of multiple decennia is enigmatic. By computational analysis, we here disentangle the reactive oxygen species (ROS) regulatory network into a hierarchy of subnetworks that each correspond to a different functionality. The detailed dynamic model of ROS management obtained integrates these functionalities and fits in vitro data sets from two different laboratories. The model shows effective ROS-management for a century, followed by a sudden system’s collapse due to the loss of p62 protein. PD related conditions such as lack of DJ-1 protein or increased α-synuclein accelerated the system’s collapse. Various in-silico interventions (e.g. addition of antioxidants or caffeine) slowed down the collapse of the system in silico, suggesting the model may help discover new medicinal and nutritional therapies.

Authors: Alexey Kolodkin, Raju Prasad Sharma, Anna Maria Colangelo, Andrew Ignatenko, Francesca Martorana, Danyel Jennen, Jacco J. Briede, Nathan Brady, Matteo Barberis, Thierry D.G.A. Mondeel, Michele Papa, Vikas Kumar, Bernhard Peters, Alexander Skupin, Lilia Alberghina, Rudi Balling, Hans V. Westerhoff

Date Published: No date defined

Publication Type: Not specified

Abstract (Expand)

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 μM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite’s plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.

Authors: Marina Roussaki, George E. Magoulas, Theano Fotopoulou, Nuno Santarem, Emile Barrias, Ina Pöhner, Sara Luelmo, Pantelis Afroudakis, Kalliopi Georgikopoulou, Paloma Tejera Nevado, Julia Eick, Eugenia Bifeld, María J. Corral, María Dolores Jiménez-Antón, Bernhard Ellinger, Maria Kuzikov, Irini Fragiadaki, Effie Scoulica, Sheraz Gul, Joachim Clos, Kyriakos C. Prousis, Juan J. Torrado, José María Alunda, Rebecca C. Wade, Wanderley de Souza, Anabela Cordeiro da Silva, Theodora Calogeropoulou

Date Published: 1st Sep 2023

Publication Type: Journal

Abstract (Expand)

It is currently difficult to determine the effect of oncogenic viruses on the global function and regulation of pathways within mammalian cells. A thorough understanding of the molecular pathways and individual genes altered by oncogenic viruses is needed for the identification of targets that can be utilised for early diagnosis, prevention, and treatment methods. We detail a logical step-by-step guide to uncover viral-protein-miRNA interactions using publically available datasets and the network building program, Cytoscape. This method may be applied to identify specific pathways that are altered in viral infection, and contribute to the oncogenic transformation of cells. To demonstrate this, we constructed a gene regulatory interactome encompassing Human Papillomavirus Type 16 (HPV16) and its control of specific miRNAs. This approach can be broadly applied to understand and map the regulatory functions of other oncogenic viruses, and determine their role in altering the cellular environment in cancer.

Authors: Meredith Hill, Dayna Mason, Tânia Monteiro Marques, Margarida Gama Carvalho, Nham Tran

Date Published: 1st Oct 2019

Publication Type: Not specified

Abstract (Expand)

Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phen othiazine (7) and 10-(3-(1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-ph enothiazine (12) showed respective IC50 values of 1.8 and 1.9 mug mL(-1) against T. cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead.

Authors: E. Uliassi, L. Piazzi, F. Belluti, A. Mazzanti, M. Kaiser, R. Brun, C. B. Moraes, L. H. Freitas-Junior, S. Gul, M. Kuzikov, B. Ellinger, C. Borsari, M. P. Costi, M. L. Bolognesi

Date Published: 6th Apr 2018

Publication Type: Journal

Abstract (Expand)

The importance of lipids seen in studies of metabolism, cancer, the recent COVID-19 pandemic and other diseases has brought the field of lipidomics to the forefront of clinical research. Quantitative and comprehensive analysis is required to understand biological interactions among lipid species. However, lipidomic analysis is often challenging due to the various compositional structures, diverse physicochemical properties, and wide dynamic range of concentrations of lipids in biological systems. To study the comprehensive lipidome, a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS)-based screening method with 1200 lipid features across 19 (sub)classes, including both nonpolar and polar lipids, has been developed. HILIC-MS/MS was selected due to its class separation property and fatty acyl chain level information. 3D models of class chromatographic retention behavior were established and evaluations of cross-class and within-class interferences were performed to avoid over-reporting these features. This targeted HILIC-MS/MS method was fully validated, with acceptable analytical parameters in terms of linearity, precision, reproducibility, and recovery. The accurate quantitation of 608 lipid species in the SRM 1950 NIST plasma was achieved using multi-internal standards per class and post-hoc correction, extending current databases by providing lipid concentrations resolved at fatty acyl chain level. The overall correlation coefficients (R(2)) of measured concentrations with values from literature range from 0.64 to 0.84. The applicability of the developed targeted lipidomics method was demonstrated by discovering 520 differential lipid features related to COVID-19 severity. This high coverage and targeted approach will aid in future investigations of the lipidome in various disease contexts.

Authors: Z. Zhang, M. Singh, A. Kindt, A. B. Wegrzyn, M. J. Pearson, A. Ali, A. C. Harms, P. Baker, T. Hankemeier

Date Published: 31st Aug 2023

Publication Type: Journal

Abstract (Expand)

Acyl-CoAs play a significant role in numerous physiological and metabolic processes making it important to assess their concentration levels for evaluating metabolic health. Considering the importanthe important role of acyl-CoAs, it is crucial to develop an analytical method that can analyze these compounds. Due to the structural variations of acyl-CoAs, multiple analytical methods are often required for comprehensive analysis of these compounds, which increases complexity and the analysis time. In this study, we have developed a method using a zwitterionic HILIC column that enables the coverage of free CoA and short- to long-chain acyl-CoA species in one analytical run. Initially, we developed the method on a QTOF instrument for the identification of acyl-CoA species, optimizing their chromatography and retention times. Later, a targeted HILIC-MS/MS method was created in scheduled multiple reaction monitoring mode on a QTRAP instrument. The performance of the method was evaluated based on various parameters such as linearity, precision, recovery and matrix effect. This method was applied to identify the difference in acyl-CoA profiles in HepG2 cells cultured in different conditions. Our findings revealed an increase in levels of acetyl-CoA, medium- and long-chain acyl-CoA while a decrease in the profiles of free CoA in the starved state, indicating a clear alteration in the fatty acid oxidation process.

Authors: Madhulika Singh, Ligia Akemi Kiyuna, Christoff Odendaal, Barbara M. Bakker, Amy C Harms, Thomas Hankemeier

Date Published: 11th Sep 2023

Publication Type: Journal

Abstract (Expand)

The neuroprotective performance against neuroinflammation of the endocannabinoid system (ECS) can be remarkably improved by indirect stimulation mediated by the pharmacological inhibition of the key ECS catabolic enzyme fatty acid amide hydrolase (FAAH). Based on our previous works and aiming to discover new selective FAAH inhibitors , we herein reported a new series of carbamate-based FAAH inhibitors (4a-t) which showed improved drug disposition properties compared to the previously reported analogues 2a-b. The introduction of ionizable functions allowed us to obtain new FAAH inhibitors of nanomolar potency characterized by good water solubility and chemical stability at physiological pH. Interesting structure-activity relationships (SARs), deeply analyzed by molecular docking and molecular dynamic (MD) simulations, were obtained. All the newly developed inhibitors showed an excellent selectivity profile evaluated against monoacylglycerol lipase and cannabinoid receptors. The reversible mechanism of action was determined by a rapid dilution assay. Absence of toxicity was confirmed in mouse fibroblasts NIH3T3 (for compounds 4e, 4g, 4n-o, and 4s) and in human astrocytes cell line 1321N1 (for compounds 4e, 4n, and 4s). The absence of undesired cardiac effects was also confirmed for compound 4n. Selected analogues (compounds 4e, 4g, 4n, and 4s) were able to reduce oxidative stress in 1321N1 astrocytes and exhibited notable neuroprotective effects when tested in an ex vivo model of neuroinflammation.

Authors: A. Papa, S. Pasquini, F. Galvani, M. Cammarota, C. Contri, G. Carullo, S. Gemma, A. Ramunno, S. Lamponi, B. Gorelli, S. Saponara, K. Varani, M. Mor, G. Campiani, F. Boscia, F. Vincenzi, A. Lodola, S. Butini

Date Published: 15th Jan 2023

Publication Type: Journal

Abstract (Expand)

Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.

Authors: Dierk-Christoph Pöther, Manuel Liebeke, Falko Hochgräfe, Haike Antelmann, Dörte Becher, , Ulrike Lindequist, Ilya Borovok, Gerald Cohen, Yair Aharonowitz,

Date Published: 16th Oct 2009

Publication Type: Not specified

Abstract (Expand)

The vicinal amino alcohol is a common motif in natural products and pharmaceuticals. Amino acidsconstitute a natural, inexpensive, and enantiopure choice of starting material for the synthesis of suchfunctionalities. However, the matters concerning diastereoselectivity are not obvious. This Perspectivetakes a look in thefield of diastereoselective synthesis of vicinal amino alcohols starting from amino acidsusing various methods. https://pubs.rsc.org/en/content/articlepdf/2012/ob/c2ob25357g

Authors: Oskari K. Karjalainen, Ari M. P. Koskinen

Date Published: 2012

Publication Type: Not specified

Abstract (Expand)

We previously demonstrated that leukemia cell lines expressing CD44 and hematopoietic progenitor cells (HPC) from umbilical cord blood (CB) showed rolling on hyaluronic acid (HA)-coated surfaces under physiological shear stress. In the present study, we quantitatively assessed the interaction of HPC derived from CB, mobilized peripheral blood (mPB) and bone marrow (BM) from healthy donors, as well as primary leukemia blasts from PB and BM of patients with acute myeloid leukemia (AML) with HA. We have demonstrated that HPC derived from healthy donors showed relative homogeneous rolling and adhesion to HA. In contrast, highly diverse behavioral patterns were found for leukemia blasts under identical conditions. The monoclonal CD44 antibody (clone BU52) abrogated the shear stress-induced rolling of HPC and leukemia blasts, confirming the significance of CD44 in this context. On the other hand, the immobile adhesion of leukemia blasts to the HA-coated surface was, in some cases, not or incompletely inhibited by BU52. The latter property was associated with non-responsiveness to induction chemotherapy and subsequently poor clinical outcome.

Authors: M. Hanke, I. Hoffmann, C. Christophis, M. Schubert, V. T. Hoang, A. Zepeda-Moreno, N. Baran, V. Eckstein, P. Wuchter, A. Rosenhahn, A. D. Ho

Date Published: 26th Nov 2013

Publication Type: Journal

Abstract

Not specified

Authors: A. Schmoldt, H. F. Benthe, G. Haberland

Date Published: 1st Sep 1975

Publication Type: Journal

Abstract

Not specified

Authors: A. Schmoldt, H. F. Benthe, G. Haberland

Date Published: 1st Sep 1975

Publication Type: Journal

Abstract

Not specified

Authors: A. Schmoldt, H. F. Benthe, G. Haberland

Date Published: 1st Sep 1975

Publication Type: Journal

Abstract (Expand)

Signaling pathways are characterized by crosstalk, feedback and feedforward mechanisms giving rise to highly complex and cell-context specific signaling networks. Dissecting the underlying relations is crucial to predict the impact of targeted perturbations. However, a major challenge in identifying cell-context specific signaling networks is the enormous number of potentially possible interactions. Here, we report a novel hybrid mathematical modeling strategy to systematically unravel hepatocyte growth factor (HGF) stimulated phosphoinositide-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signaling, which critically contribute to liver regeneration. By combining time-resolved quantitative experimental data generated in primary mouse hepatocytes with interaction graph and ordinary differential equation modeling, we identify and experimentally validate a network structure that represents the experimental data best and indicates specific crosstalk mechanisms. Whereas the identified network is robust against single perturbations, combinatorial inhibition strategies are predicted that result in strong reduction of Akt and ERK activation. Thus, by capitalizing on the advantages of the two modeling approaches, we reduce the high combinatorial complexity and identify cell-context specific signaling networks.

Authors: L. A. D'Alessandro, R. Samaga, T. Maiwald, S. H. Rho, S. Bonefas, A. Raue, N. Iwamoto, A. Kienast, K. Waldow, R. Meyer, M. Schilling, J. Timmer, S. Klamt, U. Klingmuller

Date Published: 24th Apr 2015

Publication Type: Journal

Abstract (Expand)

In pathogenic trypanosomes, trypanothione synthetase (TryS) catalyzes the synthesis of both glutathionylspermidine (Gsp) and trypanothione [bis(glutathionyl)spermidine, T(SH)2]. Here we present a thorough kinetic analysis of Trypanosoma brucei TryS in a newly developed phosphate buffer system at pH 7.0 and 37 °C, mimicking the physiological environment of the enzyme in the cytosol of bloodstream parasites. Under these conditions, TryS displays Km-values for GSH, ATP, spermidine and Gsp of 34, 18, 687, and 32 μM, respectively, as well as Ki-values for GSH and T(SH)2 of 1 mM and 360 μM, respectively. As Gsp hydrolysis has a Km-value of 5.6 mM, the in vivo amidase activity is probably negligible. To obtain a deeper insight in the molecular mechanism of TryS, we have formulated alternative kinetic models, with elementary reaction steps represented by linear kinetic equations. The model parameters were fitted to the extensive matrix of steady-state data obtained for different substrate/product combinations under the in vivo-like conditions. The best model describes the full kinetic profile and is able to predict time course data that were not used for fitting. This systems biology approach to enzyme kinetics led us to conclude that (i) TryS follows a ter-reactant mechanism, (ii) the intermediate Gsp dissociates from the enzyme between the two catalytic steps and (iii) T(SH)2 inhibits the enzyme by remaining bound at its product site and, as does the inhibitory GSH, by binding to the activated enzyme complex. The newly detected concerted substrate and product inhibition suggests that TryS activity is tightly regulated.

Editor:

Date Published: 3rd Jul 2013

Publication Type: Not specified

Abstract (Expand)

Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.

Authors: J. A. Wodke, J. Puchalka, M. Lluch-Senar, J. Marcos, E. Yus, M. Godinho, R. Gutierrez-Gallego, V. A. dos Santos, L. Serrano, E. Klipp, T. Maier

Date Published: 4th Apr 2013

Publication Type: Not specified

Abstract (Expand)

The RNA degradosome is a multiprotein macromolecular complex that is involved in the degradation of messenger RNA in bacteria. The composition of this complex has been found to display a high degree of evolutionary divergence, which may reflect the adaptation of species to different environments. Recently, a degradosome-like complex identified in Bacillus subtilis was found to be distinct from those found in proteobacteria, the degradosomes of which are assembled around the unstructured C-terminus of ribonuclease E, a protein not present in B. subtilis. In this report, we have investigated in vitro the binary interactions between degradosome components and have characterized interactions between glycolytic enzymes, RNA-degrading enzymes, and those that appear to link these two cellular processes. The crystal structures of the glycolytic enzymes phosphofructokinase and enolase are presented and discussed in relation to their roles in the mediation of complex protein assemblies. Taken together, these data provide valuable insights into the structure and dynamics of the RNA degradosome, a fascinating and complex macromolecular assembly that links RNA degradation with central carbon metabolism.

Authors: , Lorraine Hewitt, Cecilia Rodrigues, Alexandra S Solovyova, ,

Date Published: 16th Dec 2011

Publication Type: Not specified

Abstract (Expand)

UNLABELLED: Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. CONCLUSION: Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the existence of compensatory mechanisms or limited rate control of MCAD in murine mitochondrial fatty acid oxidation.

Authors: H. Herrema, T. G. Derks, T. H. van Dijk, V. W. Bloks, A. Gerding, R. Havinga, U. J. Tietge, M. Muller, G. P. Smit, F. Kuipers, D. J. Reijngoud

Date Published: 7th May 2008

Publication Type: Not specified

Abstract (Expand)

Clostridium beijerinckii is a relatively widely studied, yet non-model, bacterium. While 246 genome assemblies of its various strains are available currently, the diversity of the whole species has notpecies has not been studied, and it has only been analyzed in part for a missing genome of the type strain. Here, we sequenced and assembled the complete genome of the type strain Clostridium beijerinckii DSM 791T, composed of a circular chromosome and a circular megaplasmid, and used it for a comparison with other genomes to evaluate diversity and capture the evolution of the whole species. We found that strains WB53 and HUN142 were misidentified and did not belong to the Clostridium beijerinckii species. Additionally, we filtered possibly misassembled genomes, and we used the remaining 237 high-quality genomes to define the pangenome of the whole species. By its functional annotation, we showed that the core genome contains genes responsible for basic metabolism, while the accessory genome has genes affecting final phenotype that may vary among different strains. We used the core genome to reconstruct the phylogeny of the species and showed its great diversity, which complicates the identification of particular strains, yet hides possibilities to reveal hitherto unreported phenotypic features and processes utilizable in biotechnology.

Authors: Karel Sedlar, Marketa Nykrynova, Matej Bezdicek, Barbora Branska, Martina Lengerova, Petra Patakova, Helena Skutkova

Date Published: 1st Jul 2021

Publication Type: Journal

Abstract (Expand)

Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

Authors: J. Bachmann, A. Raue, M. Schilling, M. E. Bohm, C. Kreutz, D. Kaschek, H. Busch, N. Gretz, W. D. Lehmann, J. Timmer, U. Klingmuller

Date Published: 2011

Publication Type: Not specified

Abstract (Expand)

Mutations in DNA replication initiator genes in both prokaryotes and eukaryotes lead to a pleiotropic array of phenotypes, including defects in chromosome segregation, cytokinesis, cell cycle regulation and gene expression. For years, it was not clear whether these diverse effects were indirect consequences of perturbed DNA replication, or whether they indicated that DNA replication initiator proteins had roles beyond their activity in initiating DNA synthesis. Recent work from a range of organisms has demonstrated that DNA replication initiator proteins play direct roles in many cellular processes, often functioning to coordinate the initiation of DNA replication with essential cell-cycle activities. The aim of this review is to highlight these new findings, focusing on the pathways and mechanisms utilized by DNA replication initiator proteins to carry out a diverse array of cellular functions.

Authors: Graham Scholefield, , Heath Murray

Date Published: 27th Aug 2010

Publication Type: Not specified

Abstract (Expand)

Thraustochytrids are unicellular, marine protists, and there is a growing industrial interest in these organisms, particularly because some species, including strains belonging to the genus Aurantiochytrium, accumulate high levels of docosahexaenoic acid (DHA). Here, we report the draft genome sequence of Aurantiochytrium sp. T66 (ATCC PRA-276), with a size of 43 Mbp, and 11,683 predicted protein-coding sequences. The data has been deposited at DDBJ/EMBL/Genbank under the accession LNGJ00000000. The genome sequence will contribute new insight into DHA biosynthesis and regulation, providing a basis for metabolic engineering of thraustochytrids.

Authors: B. Liu, H. Ertesvag, I. M. Aasen, O. Vadstein, T. Brautaset, T. M. Heggeset

Date Published: No date defined

Publication Type: Not specified

Abstract (Expand)

In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.

Authors: T. Maiwald, H. Hass, B. Steiert, J. Vanlier, R. Engesser, A. Raue, F. Kipkeew, H. H. Bock, D. Kaschek, C. Kreutz, J. Timmer

Date Published: 3rd Sep 2016

Publication Type: Not specified

Abstract (Expand)

Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Gl​ycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies.

Editor:

Date Published: 19th Jan 2012

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. RESULTS: To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. CONCLUSION: This study provides a deeper systems level insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

Authors: U. K. Aryal, J. Stockel, R. K. Krovvidi, M. A. Gritsenko, M. E. Monroe, R. J. Moore, D. W. Koppenaal, R. D. Smith, H. B. Pakrasi, J. M. Jacobs

Date Published: No date defined

Publication Type: Not specified

Abstract (Expand)

Background Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. Results In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time) is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. Conclusion The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal), while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly). Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways.

Authors: Julio Vera, , Walter Kolch,

Date Published: 2008

Publication Type: Not specified

Abstract (Expand)

Highly pathogenic human respiratory coronaviruses cause acute lethal disease characterized by exuberant inflammatory responses and lung damage. However, the factors leading to lung pathology are not well understood. Using mice infected with SARS (severe acute respiratory syndrome)-CoV, we show that robust virus replication accompanied by delayed type I interferon (IFN-I) signaling orchestrates inflammatory responses and lung immunopathology with diminished survival. IFN-I remains detectable until after virus titers peak, but early IFN-I administration ameliorates immunopathology. This delayed IFN-I signaling promotes the accumulation of pathogenic inflammatory monocytemacrophages (IMMs), resulting in elevated lung cytokine/chemokine levels, vascular leakage, and impaired virus-specific T cell responses. Genetic ablation of the IFN-ab receptor (IFNAR) or IMM depletion protects mice from lethal infection, without affecting viral load. These results demonstrate that IFN-I and IMM promote lethal SARS-CoV infection and identify IFN-I and IMMs as potential therapeutic targets in patients infected with pathogenic coronavirus and perhaps other respiratory viruses.

Authors: Rudragouda Channappanavar, Anthony R. Fehr, Rahul Vijay, Matthias Mack, Jincun Zhao, David K. Meyerholz, Stanley Perlman

Date Published: 1st Feb 2016

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH