Publications

What is a Publication?
21 Publications visible to you, out of a total of 21

Abstract (Expand)

Gel-based proteomics is a useful approach for visualizing the responses of bacteria to stress and starvation stimuli. In order to face stress/starvation, bacteria have developed very complicated gene expression networks. A proteomic view of stress/starvation responses, however, is only a starting point which should promote follow-up studies aimed at the comprehensive description of single regulons, their signal transduction pathways on the one hand, and their adaptive functions on the other, and finally their integration into complex gene expression networks. This "road map of physiological proteomics" will be demonstrated for the general stress regulon controlled by sigma(B) in Bacillus subtilis and the oxygen starvation response with Rex as a master regulator in Staphylococcus aureus.

Authors: , Alexander Reder, Stephan Fuchs, Martin Pagels, Susanne Engelmann

Date Published: 20th Feb 2009

Publication Type: Not specified

Abstract (Expand)

Proteomic and transcriptomics signatures are powerful tools for visualizing global changes in gene expression in bacterial cells after exposure to stress, starvation or toxic compounds. Based on the global expression profile and the dissection into specific regulons, this knowledge can be used to predict the mode of action for novel antimicrobial compounds. This review summarizes our recent progress of proteomic signatures in the model bacterium for low-GC Gram-positive bacteria Bacillus subtilis in response to the antimicrobial compounds phenol, catechol, salicylic acid, 2-methylhydroquinone (2-MHQ) and 6-brom-2-vinyl-chroman-4-on (chromanon). Catechol, 2-MHQ and diamide displayed a common mode of action, as revealed by the induction of the thiol-specific oxidative stress response. In addition, multiple dioxygenases/glyoxalases, azoreductases and nitroreductases were induced by thiol-reactive compounds that are regulated by two novel thiol-specific regulators, YodB and MhqR (YkvE), both of which contribute to electrophile resistance in B. subtilis. These novel thiol-stress-responsive mechanisms are highly conserved among Gram-positive bacteria and are thought to have evolved to detoxify quinone-like electrophiles.

Authors: Haike Antelmann, , Peter Zuber

Date Published: 20th Feb 2008

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH