Assays

240 Assays visible to you, out of a total of 446

Proton fluxes ensue a change in the membrane potential to which the potassium uptake responds. The membrane potential changes depend on the extrusion of protons, buffering capacities of the media and experimental parametes.

Contributor: Falko Krause

Biological problem addressed: Modelling Analysis

Investigation: TRK1,2 Transport Systems of Saccharomyces cerev...

Study: Kinetic properties of Trk

Mutants with a linear respiratory chain consisting of NADH Dehydrogenase II and one of the terminal oxidases cytochrom bo, cytochrome bd I or cytochrome bd II were growth in chemostats with defined oxygen supply. The amounts of biomass formed and of acetate and formate produced were determined.

Determination of essential amino acids for Streptococcus pyogenes

The task of this assay is to determine the impact of oxygen availability on the concentrations of metabolites from different central metabolic pathways. The focus lies on metabolites connected to glycolysis, tri-carbon-acid-cycle and energy metabolism. All strains have been cultured and analysed according to the SOPs listed below

This assay describes the determination of concentrations and ratio of metabolites of adenine nucleotides (NAD and NADH).
These metabolites have been extracted from Escherichia coli MG1655 and isgenic mutant strains.

This assay describes the determination of concentrations and ratio of metabolites of ubiquinones (oxidised and reduced form).
These metabolites have been extracted from Escherichia coli MG1655 and isgenic mutant strains.

Analytical methods and computational analyses (regression, fitting) will be employed to find properties of the Trk system under different external conditions.

Contributor: Falko Krause

Biological problem addressed: Modelling Analysis

Investigation: TRK1,2 Transport Systems of Saccharomyces cerev...

Study: Kinetic properties of Trk

Mutants with linear respiratory chains were grown under SUMO chemostat conditions at different defined aerobiosis levels. The ArcA phoshorylation state as determined.

Dynamics of extracellular metabolites (glc, pyr, suc, lac, gly, ac, etoh, fum, mal, cit, including loss of akg, g3p, 2pg, 3pg, r5p, f6p, g6p, 6pg) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

Dynamics of intracellular metabolites (pyr, suc, fum, mal, akg, pep, g3p, 2pg, 3pg, cit, r5p, f6p, g6p, 6pg, ATP, ADP, AMP, UTP, GTP, inosine, NAD+, IMP, UDP, NADP+, CTP, AdenyloSuccinate, NADPH, trehalose) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines,
...

Dynamics of macromolecules (total RNA) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

Powered by
Seek new full
(v.1.4.1)
Copyright © 2008 - 2017 The University of Manchester and HITS gGmbH